首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8119篇
  免费   339篇
  国内免费   92篇
测绘学   199篇
大气科学   566篇
地球物理   1916篇
地质学   2915篇
海洋学   747篇
天文学   1198篇
综合类   19篇
自然地理   990篇
  2021年   86篇
  2020年   112篇
  2019年   114篇
  2018年   166篇
  2017年   162篇
  2016年   226篇
  2015年   194篇
  2014年   196篇
  2013年   469篇
  2012年   248篇
  2011年   309篇
  2010年   281篇
  2009年   338篇
  2008年   319篇
  2007年   279篇
  2006年   314篇
  2005年   237篇
  2004年   291篇
  2003年   262篇
  2002年   264篇
  2001年   173篇
  2000年   170篇
  1999年   141篇
  1998年   141篇
  1997年   103篇
  1996年   104篇
  1995年   109篇
  1994年   123篇
  1993年   109篇
  1992年   107篇
  1991年   106篇
  1990年   101篇
  1989年   84篇
  1988年   83篇
  1987年   113篇
  1986年   97篇
  1985年   160篇
  1984年   185篇
  1983年   142篇
  1982年   124篇
  1981年   127篇
  1980年   107篇
  1979年   123篇
  1978年   117篇
  1977年   103篇
  1976年   96篇
  1975年   91篇
  1974年   67篇
  1973年   83篇
  1972年   49篇
排序方式: 共有8550条查询结果,搜索用时 78 毫秒
961.
962.
We describe enhancements to the hardware and software for the 150-foot tower system on Mt. Wilson which make possible the acquisition of high precision line profile measurements. This system utilizes the 75-foot pit spectrograph with a photomultiplier detector system to scan line profiles repeatedly in order to study variations induced by the passage of waves vertically through the solar atmosphere. Oscillations of line profile parameters with an amplitude as low as 1.7 m s–1 have been detected with this system using integrated sunlight. Phase relations between oscillations of different parts of the line profile are appropriate to upward energy transport. Consistent with the previous conclusion by Mein and Schmieder (1981), we find that the magnitude of the energy transport is compatible with the 5-min oscillations making an important contribution to the heating of the low chromosphere.The Mount Wilson Observatory is operated by the Mount Wilson Institute under agreement with the Carnegie Institution of Washington.  相似文献   
963.
Future radiotelescopes need ever increasing sensitivity. With the limits of receiver sensitivity being reached this can only be achieved by increasing collecting area. The increase in antenna numbers and the multi-resolution capabilities of these telescopes, such as the SKA, means a significant departure from existing designs is needed. In this article, some fundamental designs for antenna arrays that uniformly sample the UV plane are presented. The SKA is used to provide target specifications. The designs presented allow asymmetric configurations providing more freedom for site selection. They also allow a direct tradeoff between field of view and correlator complexity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
964.
We investigate the distribution of Oort cloud comet perihelia. The data considered includes comets having orbital elements of the two highest quality classes with original energies designated as new or young. Perihelion directions are determined in galactic, ecliptic and geocentric equatorial coordinates. Asymmetries are detected in the scatter and are studied statistically for evidence of adiabatic galactic tidal dynamics, an impulse-induced shower and observational bias. The only bias detected is the well-known deficiency of observations with perihelion distances q > 2.5 AU. There is no significant evidence of a seasonal dependence. Nor is there a substantive hemispherical bias in either ecliptic or equatorial coordinates. There is evidence for a weak stellar shower previously detected by Biermann which accounts for ≈ 10% of the total observations. Both the q bias and the Biermann star track serve to weaken the evidence for a galactic tidal imprint. Nevertheless, statistically significant asymmetries in galactic latitude and longitude of perihelia remain. A latitude asymmetry is produced by a dominant tidal component perpendicular to the galactic disk. The longitude signal implies that ≈ 20% of new comets need an additional dynamical mechanism. Known disk non-uniformities and an hypothetical bound perturber are discussed as potential explanations. We conclude that the detected dynamical signature of the galactic tide is real and is not an artifact of observational bias, impulsive showers or poor data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
965.
Offshore exploration in Norway and Denmark-in the North Sea, the Norwegian Sea and the Barents Sea-has involved drilling about 850 wildcat wells, resulting in about 300 oil and gas finds, of which 84 are fields with production. The recoverable resources of all these finds total about 65 billion barrels of oil equivalent. Almost all these hydrocarbons come from a Jurassic source and the main reservoirs and traps are Jurassic sandstones in fault blocks and Paleocene sandstones or Cretaceous chalks in gentle domes. The article describes four major fields-Ekofisk, Gullfaks, Ormen Lange and SnФhvitto illustrate some of the many challenges in developing and producing the hydrocarbons.
Elsewhere in Norden, there has been much less exploration. Drilling results have mostly been negative in mainland Sweden, onshore Denmark, onshore Svalbard and on- and offshore West Greenland. Minor oil finds have been made in Palaeozoic rocks in the Baltic Sea. The first wells have recently been drilled off the Faroe Islands, resulting in one discovery. No drilling has taken place on- or offshore East Greenland.
As a result of the hydrocarbon activities in Norway and Denmark, petroleum geoscience there has flourished, with 2000 geoscientists currently employed in the industry, many technical innovations made, a wealth of publically available information and a great increase in the understanding of the geology.  相似文献   
966.
967.
The International GNSS Service (IGS) is an international activity involving more than 200 participating organisations in over 80 countries with a track record of one and a half decades of successful operations. The IGS is a service of the International Association of Geodesy (IAG). It primarily supports scientific research based on highly precise and accurate Earth observations using the technologies of Global Navigation Satellite Systems (GNSS), primarily the US Global Positioning System (GPS). The mission of the IGS is “to provide the highest-quality GNSS data and products in support of the terrestrial reference frame, Earth rotation, Earth observation and research, positioning, navigation and timing and other applications that benefit society”. The IGS will continue to support the IAG’s initiative to coordinate cross-technique global geodesy for the next decade, via the development of the Global Geodetic Observing System (GGOS), which focuses on the needs of global geodesy at the mm-level. IGS activities are fundamental to scientific disciplines related to climate, weather, sea level change, and space weather. The IGS also supports many other applications, including precise navigation, machine automation, and surveying and mapping. This article discusses the IGS Strategic Plan and future directions of the globally-coordinated ~400 station IGS network, tracking data and information products, and outlines the scope of a few of its numerous working groups and pilot projects as the world anticipates a truly multi-system GNSS in the coming decade.  相似文献   
968.
As part of the evaluation of the environmental impact of sequestering carbon dioxide in the deep ocean, we exposed the sediment-dwelling fauna at a station in Monterey Submarine Canyon (36.378°N, 122.676°W, 3262 m) to carbon dioxide-rich seawater and found that most of the harpacticoid copepods were killed. In an expanded, follow-on experiment on the continental rise nearby (36.709°N, 123.523°W, 3607 m), not only did harpacticoids survive exposure to carbon dioxide-rich seawater, but we found no evidence from seven additional metrics that the harpacticoids had been affected. We infer that during the second experiment the harpacticoids were not exposed to a stressful dose. During the second experiment, carbon dioxide-rich seawater appears to have been produced more slowly than in the first, probably because of differences in the near-bottom flow regimes. We conclude that local physical circumstances can substantially influence the results of experiments of this type and will complicate the evaluation of the environmental consequences of deep-ocean carbon dioxide sequestration.  相似文献   
969.
The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (~50°N) to off Baja California, Mexico (~15–25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号